Значение слова кроссинговер. Кроссинговер, механизмы и эволюционное значение Процесс кроссинговера

Кроссинговер - процесс, во время которого гомологичные хромосомы обмениваются определенными участками. Перекрест хромосом приводит новые комбинации (рекомбинации) аллелей различных генов и является важнейшим механизмом обеспечения комбинативной изменчивости в популяциях, который поставляет материал для естественного отбора. Рекомбинация - это перераспределение генетической информации у потомков, в основе которой при сцепленном наследовании лежит кроссинговер (межгенная рекомбинация).

Происходит кроссинговер в профазе I мейоза и после конъюгации приводит к перераспределению генов в хромосомах. Это явление носит случайный характер и может происходить в любом участке гомологичных хромосом. Исследование кроссинговера, проведенные на разных организмах, выявили следующие закономерности:

■ сила сцепления между двумя генами, расположенными в одной хромосоме, обратно пропорциональна расстоянию между ними, следовательно, чем это расстояние больше, тем чаще происходит кроссинговер;

■ частота кроссинговера зависит от расстояния между генами и выражается в процентах;

■ частота кроссинговера между двумя генами, расположенными в одной хромосоме, является величиной постоянной для каждой конкретной пары генов;

■ величина кроссинговера измеряется отношением количества кроссоверных особей к общему количеству особей в потомстве от анализирующего скрещивания.

Хотя частота кроссинговера является величиной постоянной, на нее могут влиять некоторые факторы внешней и внутренней среды: изменения в строении отдельных хромосом, температура, рентгеновские лучи, некоторые химические соединения и др.. У некоторых организмов обнаружена зависимость частоты кроссинговера от возраста (например, у дрозофил) или пола (например, у мышей).

3. Генетические карты хромосом

Генетические карты - это графическое изображение хромосом с указанным порядком расположения генов и расстояния между ними.

Работы Т. X. Моргана и его коллег показали, что частота кроссинговера между одними и теми же генами - величина постоянная. За единицу расстояния между генами принята

1 морганида, равна/ % кроссинговера. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

Рассчитывают расстояние между генами по формуле:

где LAB - расстояние между генами; m и n - количество особей в каждой кроссоверной группе потомков;

N - общее число некросоверных и кросоверных потомков при скрещивании.

Размеры карт определяются суммой расстояний между генами. Генетические карты большинства организмов имеют вид прямой линии, а бактерий и вирусов - замкнутого кольца. Строят карты на базе следующих методов: гибридологического анализа, гибридизации соматических клеток различных видов, меченых фрагментов ДНК и др..

Генетические карты имеют значение для проведения селекционной работы, диагностики тяжелых наследственных болезней человека и др... Знания о локализации гена в определенной хромосоме используются при диагностике ряда тяжелых наследственных заболеваний человека. Уже теперь появилась возможность для генной терапии, то есть для исправления структуры или функции генов.

Сравнение генетических карт разных видов живых организмов способствует также пониманию эволюционного процесса

рис. 1

Как происходит «обычное» разрешение перекрестов – понятно по рисунку. Как происходит разрешение с «перескоком» (вертикальные черточки) – по рисунку не очень понятно. Для того, чтобы понять это, надо перейти от плоской ДНК к трехмерной.


рис. 2

Левый рисунок аналогичен схемам, которые мы рисовали выше. На среднем рисунке та же самая структура нарисована так, как она выглядит в жизни. Повернув нижнюю часть среднего рисунка по стрелочке, получаем правый рисунок. Если мы разрежем ножиком между цифрами 1, то получим «левый путь», кроссинговера не будет. А если разрежем между цифрами 2, то получим «правый путь», кроссинговер. (Но если «разрезание ножичком» 1 и 2 равноправны, то почему первое происходит гораздо чаще, чем второе? – «Разрезание» зависит не от того, как в пространстве повернулась молекула ДНК, а от того, какие белки работают в месте перекреста.)

То же самое с терминами

«Левый конец» называется инвазивным , процесс его встраивания в гомологичную ДНК – инвазия . После того, как инвазивный конец соединился с гомологичной ДНК, получается гетеродуплекс (участок ДНК, содержащий цепи из разных молкул). Петля, вытесненная инвазивным концом, называется D-петля . Перекрест между цепями ДНК называется структура Холидея – на рисунке №2 она изображена аж три раза, в трех различных позах. Мало? – Вот вам она же в виде мультика.


Разрешение структуры Холидея может происходить по рекомбинационному либо по конверсионному пути. Рекомбинационный путь (вертикальные черточки на рис. 1, разрезание через цифры 2 на рис. 2, правые ножнички на рис. 3) приводит к рекомбинации, хромосомы меняются своими участками. Конверсионный путь (горизонтальные черточки на рис. 1, разрезание через цифры 1 на рис. 2) приводит к конверсии.

Конверсия

Материнская и отцовская ДНК не полностью одинаковы (а иначе зачем бы мы производили кроссинговер).

Соответственно, в гетеродуплексе отцовская и материнская цепочка не полностью комплементарны.

Ферменты репарации исправляют некомплементарные пары нуклеотидов, причем чью букву они будут исправлять – папину или мамину – случайность.

Например, если мамина ДНК была А=Т, а папина Г≡Ц, то гетеродуплекс получается А=Ц – ферменты репарации исправляют его либо на А=Т, либо на Г≡Ц.

Соответственно, есои мама была АА, а папа аа, то гетеродуплекс будет Аа – ферменты репарации исправляют его либо на АА, либо на аа, получаются странные расщепления:




Собственно, именно эти неформальные расщепления в 1964 году заставили Робина Холидея придумать модель кроссинговера – которая (с изменениями, конечно) дожила до наших дней. Со своей стороны, я поздравляю вас с тем, что вы почти дожили до конца статьи. Давайте проверим, поняли ли вы что-нибудь? Вот вам неразжеванный рисуночек.

кроссинговер (англ. crossingover; син. перекрест хромосом)

обмен участками гомологичных хромосом в процессе клеточного деления, обычно в профазе первого мейоза, иногда в митозе; приводит к новому сочетанию генов, обусловливающему изменения фенотипа; наряду с возникновением мутаций К. является важным фактором эволюции организмов.

Энциклопедический словарь, 1998 г.

кроссинговер

КРОССИНГОВЕР (англ. crossing-over) взаимный обмен участками гомологичных (парных) хромосом, приводящий к перераспределению (рекомбинации) локализованных в них генов. Происходит в процессе деления клеток; один из механизмов наследственной изменчивости. В экспериментальной генетике используется для построения генетических карт хромосом.

Кроссинговер

(от англ. crossingover), перекрест, взаимный обмен участками парных хромосом, происходящий в результате разрыва и соединения в новом порядке их нитей ≈ хроматид (рис. ); приводит к перераспределению (рекомбинации) сцепленных генов . Т. о., К. ≈ важнейший механизм, обеспечивающий комбинаторную изменчивость, а следовательно, ≈ один из главных факторов эволюции. К., как правило, имеет место в профазе первого деления половых клеток (см. Мейоз), когда их хромосомы представлены четырьмя нитями. В месте перекреста удаётся цитологически обнаружить характерную фигуру перекрещенных хромосом ≈ хиазму. Результат К. можно выявить по новому сочетанию сцепленных генов (если аллели гомологичных хромосом, участвовавших в К., были гетерозиготны). Этот приём, открытый американским генетиком Т. Морганом, позволил доказать линейное размещение генов в хромосоме и разработать метод установления их взаиморасположения (см. Генетические карты хромосом). В 1933 немецкий учёный К. Штерн цитологически доказал осуществление К. при обмене генами между хромосомами. Частота К. в грубом приближении зависит от линейного расстояния между генами. В случае, если на участке между двумя генами происходит сразу двойной или множественный обмен, частота перекомбинации этих генов уменьшается. Если разрывы в хромосомах, обменивающихся участками, произойдут не в строго идентичных точках, то наступит так называемый неравный К. При этом одна из хромосом получит дополнительный генетический материал, а в гомологичной хромосоме окажется его нехватка. У высших организмов обнаружен К. и в клетках тела (соматических), в этом случае он приводит к формированию мозаичных признаков. К. может захватывать обе нити молекулы ДНК или только одну; он может затронуть большой участок хромосомы с несколькими генами или часть одного гена (внутригенный К.). Разрывы и воссоединения хромосом при К. осуществляются при участии ряда ферментов. Однако молекулярный механизм К. окончательно не выяснен. См. также Рекомбинация, Сцепление генов.

Лит.: Кушев В. В., Механизмы генетической рекомбинации, Л., 1971.

В. Н. Сойфер.

Википедия

Кроссинговер

Кроссинго́вер или перекрёст - процесс обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза. Помимо мейотического, описан также митотический кроссинговер. Хромосома разделяется на эти участки в определённых точках, одних и тех же для одного вида, что может быть определением вида на генетическом уровне, место расположения этих точек задаётся единственным геном.

Поскольку кроссинговер вносит возмущения в картину сцепленного наследования, его удалось использовать для картирования «групп сцепления» . Возможность картирования была основана на предположении о том, что, чем чаще наблюдается кроссинговер между двумя генами, тем дальше друг от друга расположены эти гены в группе сцепления и тем чаще будут наблюдаться отклонения от сцепленного наследования. Первые карты хромосом были построены в 1913 г. для классического экспериментального объекта плодовой мушки Drosophila melanogaster Альфредом Стёртевантом, учеником и сотрудником Томаса Ханта Моргана.

Примеры употребления слова кроссинговер в литературе.

Теперь слышалось другое: гены, аллели, кроссинговер , штаммы, клоны, чистые линии.

В любом учебнике генетики можно найти закон кроссинговера , закон линейного расположения генов и т.

После него у Четверикова появились пробирки с агаром, мушки, всякие красноглазые мутации, кроссинговеры , и наконец образовался Дрозсоор.

Возникновение в результате митоза генетически неадекватных дочерних клеток - например, в результате митотического кроссинговера , неправильного расхождения хромосом и т.

Кроссинговер (от англ. crossing–over – перекрёст) – это обмен гомологичными участками гомологичных хромосом (хроматид).

Механизм кроссинговера «разрыв–воссоединение»

Согласно теории Янссенса–Дарлингтона, кроссинговер происходит в профазе мейоза. Гомологичные хромосомы с гаплотипами хроматид АВ и ab образуют биваленты. В одной из хроматид в первой хромосоме происходит разрыв на участке А–В , тогда в прилежащей хроматиде второй хромосомы происходит разрыв на участке a–b . Клетка стремится исправить повреждение с помощью ферментов репарации–рекомбинации и присоединить фрагменты хроматид. Однако при этом возможно присоединение крест–накрест (кроссинговер), и образуются рекомбинантные гаплотипы (хроматиды) Ab и аВ . В анафазе первого деления мейоза происходит расхождение двухроматидных хромосом, а во втором делении – расхождение хроматид (однохроматидных хромосом). Хроматиды, которые не участвовали в кроссинговере, сохраняют исходные сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются некроссоверными ; с их участием разовьются некроссоверные гаметы, зиготы и особи. Рекомбинантные хроматиды, которые образовались в ходе кроссинговера, несут новые сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются кроссоверными , с их участием разовьются кроссоверные гаметы, зиготы и особи.

Таким образом, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний (гаплотипов) наследственных задатков в хромосомах.

Примечание. Согласно другим теориям, кроссинговер связан с репликацией ДНК: или в пахитене мейоза, или в интерфазе (см. ниже). В частности, возможна смена матрицы в вилке репликации.

Интерференция – это подавление кроссинговера на участках, непосредственно прилегающих к точке происшедшего обмена. Рассмотрим пример, описанный в одной из ранних работ Моргана. Он исследовал частоту кроссинговера между генами w (white – белые глаза), у (yellow – желтое тело) и m (miniature – маленькие крылья), локализованными в Х-хромосоме D. melanogaster. Расстояние между генами w и у в процентах кроссинговера составило 1,3, а между генами у и m – 32,6. Если два акта кроссинговера наблюдаются случайно, то ожидаемая частота двойного кроссинговера должна быть равна произведению частот кроссинговера между генами у и w и генами w и m . Другими словами, частота двойных кроссинговеров будет 0,43%. В действительности в опыте был обнаружен лишь один двойной кроссинговер на 2205 мух, т. е. 0,045%. Ученик Моргана Г. Меллер предложил определять интенсивность интерференции количественно, путем деления фактически наблюдаемой частоты двойного кроссинговера на теоретически ожидаемую (при отсутствии интерференции) частоту. Он назвал этот показатель коэффициентом коинциденции, т. е. совпадения. Меллер показал, что в Х-хромосоме дрозофилы интерференция особенно велика на небольших расстояниях; с увеличением интервала между генами интенсивность ее уменьшается и на расстоянии около 40 морганид и более коэффициент коинциденции достигает 1 (максимального своего значения).



Виды кроссинговера:

1.Двойной и множественный кроссинговер

2.Соматический (митотический) кроссинговер

3.Неравный кроссинговер

Эволюционное значение кроссинговера

В результате кроссинговера неблагоприятные аллели, первоначально сцепленные с благоприятными, могут переходить в другую хромосому. Тогда возникают новые гаплотипы, не содержащие неблагоприятных аллелей, и эти неблагоприятные аллели элиминируются из популяции.

Биологическое значение кроссинговера

Благодаря сцепленному наследованию удачные сочетания аллелей оказываются относительно устойчивыми. В результате образуются группы генов, каждая из которых функционирует как единый суперген , контролирующий несколько признаков. В то же время, в ходе кроссинговера возникают рекомбинации – т.е. новые комбинации аллелей. Таким образом, кроссинговер повышает комбинативную изменчивость организмов.

Это означает, что…

а) в ходе естественного отбора в одних хромосомах происходит накопление «полезных» аллелей (и носители таких хромосом получают преимущество в борьбе за существование), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбывают из игры – элиминируются из популяций)

б) в ходе искусственного отбора в одних хромосомах накапливаются аллели хозяйственно-ценных признаков (и носители таких хромосом сохраняются селекционером), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбраковываются).

Предположения о связи явления наследственности с хромосомами впервые были высказаны еще в конце XIX столетия. Особенно подробно эту идею развивал в своей теории “зародышевой плазмы” А. Вейсман (см. первую лекцию). Позже американский цитолог У. Сэттон обратил внимание на соответствие характера наследования признаков у одного из видов кузнечика поведению хромосом в процессе мейоза . Он сделал вывод о локализации наследственных факторов, определяющих эти признаки, в хромосомах и об ограниченности действия закона независимого комбинирования признаков, установленного Менделем. Он считал, что независимо могут комбинироваться только те признаки, наследственные факторы которых лежат в разных хромосомах. Поскольку количество признаков намного превышает количество пар хромосом, то многие признаки контролируются генами одной хромосомы, которые должны наследоваться совместно.

Первый случай совместного наследования в 1906 г. описали английские генетики У. Бэтсон и Р. Пеннет у душистого горошка (Lathyrus odoratus L.). Они скрестили две расы душистого горошка, различающиеся по двум признакам. Одна раса характеризовалась пурпурной окраской цветков и удлиненной формой пыльцы, другая — красной окраской и округлой формой. Оказалось, что пурпурная окраска полностью доминирует над красной, а удлиненная форма пыльцы над округлой. Каждая пара признаков в отдельности давала расщепление 3: 1. Гибриды F 1 от скрещивания растений этих двух рас наследовали доминантные признаки одного из родителей, т.е. имели пурпурные цветы и удлиненную пыльцу. Однако в F 2 соотношение ожидаемых четырех фенотипов не укладывалось в формулу 9: 3: 3: 1, характерную для независимого наследования. Основное отличие заключалось в том, что комбинации признаков, которыми характеризовались родители, встречались чаще, чем следует, в то время как новые сочетания проявлялись в количестве менее ожидаемого. Родительские фенотипы преобладали также в поколении от анализирующего скрещивания. Создавалось впечатление, что наследственные факторы, имевшиеся у родителей, в процессе наследования стремятся оставаться вместе. И, наоборот, факторы, вносимые разными родителями, как бы сопротивляются вхождению в одну гамету. Это явление ученые назвали “притяжением” и “отталкиванием” факторов. При использовании родителей с другими комбинациями этих признаков Бетсон и Пеннет получили такие же результаты.

Кроссинговер в хромосомах кузнечиков

В течение нескольких лет этот случай необычного наследования у душистого горошка считался отклонением от III закона Менделя. Объяснение ему было дано Т. Морганом и его коллегами, которые обнаружили много случаев подобного наследования признаков у дрозофилы. Согласно их выводам, преимущественная передача потомству исходных комбинаций признаков обусловлена тем, что определяющие их гены располагаются в одной хромосоме, т.е. физически соединены. Это явление было названо Морганом сцеплением генов . Он же дал объяснение неполному сцеплению, предположив, что оно является результатом кроссинговера — перекреста гомологичных хромосом, которые во время коньюгации в профазе мейоза обмениваются гомологичными участками. К такому заключению Морган пришел под влиянием данных голландского цитолога Ф. Янсенса (1909), изучавшего мейоз и обратившего внимание на характерные переплетения хромосом в профазе I, напоминавшие греческую букву c. Он назвал их хиазмами.

Морганом было проделано скрещивание на дрозофиле, которое стало генетическим доказательством наличия обмена генами. В качестве родительских форм он использовал две линии дрозофилы, различающиеся по двум парам признаков. Мухи одной линии имели серое тело (признак дикого типа) и редуцированные крылья (рецессивная мутация vestigal , vg ), а мухи другой линии — черное тело (рецессивная мутация black , b ) и нормальные крылья. Все гибриды F 1 унаследовали доминантные признаки дикого типа — серое тело и нормальные крылья. Далее Морган отступил от обычной схемы скрещивания и вместо F 2 получал поколение от скрещивания гибридов F1 с гомозиготными рецессивными особями, т.е. проводил анализирующее скрещивание. Таким способом он пытался точно определить, какие типы гамет и в каком количестве образуют гибриды F 1 . Были проведены два типа анализирующих скрещиваний: в первом из них гибридные самки скрещивались с гомозиготными рецессивными самцами (bbvgvg ), во втором — гомозиготные рецессивные самки скрещивались с гибридными самцами.

Результаты двух анализирующих скрещиваний были разными. Как видно из схемы, F а прямого скрещивания состоит из четырех фенотипических классов. Это говорит о том, что гибридная самка образует четыре типа гамет, слияние которых с единственной гаметой гомозиготного рецессива приводит к проявлению в F а четырех разных комбинаций признаков. Два класса, которые повторяют по фенотипу родительские особи, Морган назвал некроссоверными, так как они произошли от слияния гамет, сформированных без участия кроссинговера и обмена генами. По количеству эти классы являются более многочисленными (83%), чем два других класса — кроссоверные (17%), характеризующиеся новыми сочетаниями признаков. Их появление свидетельствовало о том, что в мейозе при образовании части гамет самки идет процесс кроссинговера и осуществляется обмен генами. Такой тип наследования получил название неполного сцепления.

Иные результаты были получены в обратном скрещивании, где анализировался генотип гибридного самца. В F а в равных количествах были представлены только два класса особей, повторяющие по фенотипу родительские формы. Это говорило о том, что гибридный самец в отличие от гибридной самки формировал с равной частотой гаметы двух типов с исходным сочетанием генов. Подобная ситуация могла иметь место только при условии отсутствия кроссинговера и, следовательно, обмена генами при образовании гамет у самца. Этот тип наследования был назван Морганом полным сцеплением. Позже было установлено, что кроссинговер при образовании гамет у самца, как правило, отсутствует.

Перекрест хромосом происходит в профазе I мейоза, и поэтому его называют мейотическим. Он осуществляется после того как гомологичные хромосомы на стадии зиготены соединяются в пары, образуя биваленты. В профазе I каждая хромосома представлена двумя сестринскими хроматидами, и перекрест происходит не между хромосомами, а между хроматидами гомологов. Кроссинговер можно обнаружить лишь в том случае, если гены находятся в гетерозиготном состоянии (BbVv ). При гомозиготном состоянии генов кроссинговер генетически выявить нельзя, так как обмен идентичными генами не дает новых комбинаций на уровне фенотипа.

Схема наследования окраски тела и формы крыла у дрозофилы
при наличии сцепления генов

Коллега Т. Моргана А. Стертевант высказал предположение, что частота кроссинговера зависит от расстояния между генами, и полное сцепление обнаруживают гены, расположенные очень близко друг к другу. На этом основании он предложил использовать этот показатель для определения расстояния между генами. Частота кроссинговера определяется на основе результатов анализирующего скрещивания. Процент кроссинговера рассчитывается как отношение числа кроссоверных особей Fа (т.е. особей с новыми сочетаниями родительских признаков) к общему количеству особей этого потомства (в %). 1% кроссинговера принят за единицу расстояния между генами, которая позже в честь Т. Моргана была названа санти-морганидой (или просто морганидой). Частота перекреста отражает силу сцепления генов: чем меньше частота кроссинговера, тем больше сила сцепления и наоборот.

Исследование явления сцепления генов позволило Моргану сформулировать главную генетическую теорию — хромосомную теорию наследственности . Ее основные положения выглядят следующим образом:

  1. Каждый вид живых организмов характеризуется специфическим набором хромосом — кариотипом. Специфичность кариотипа определяется числом и морфологией хромосом.
  2. Хромосомы являются материальными носителями наследственности и каждая из них играет определенную роль в развитии особи.
  3. В хромосоме в линейном порядке располагаются гены. Ген — это участок хромосомы, отвечающий за развитие признака.
  4. Гены одной хромосомы образуют единую группу сцепления и стремятся наследоваться совместно. Количество групп сцепления равно гаплоидному набору хромосом, так как гомологичные хромосомы представляют одну и ту же группу сцепления.
  5. Сцепление генов может быть полным (100%-ное совместное наследование) или неполным. Неполное сцепление генов является результатом кроссинговера и обмена участками гомологичных хромосом.
  6. Частота кроссинговера зависит от расстояния между генами на хромосоме: чем дальше лежат гены друг от друга, тем чаще между ними образуется перекрест.

Перекрест, происходящий в одном участке хромосомы, называют одинарным перекрестом . Поскольку хромосома представляет собой линейную структуру значительной протяженности, то в ней одновременно могут происходить несколько перекрестов: двойные, тройные и множественные.


Если кроссинговер идет одновременно в двух соседних участках хромосомы, то частота двойных перекрестов оказывается ниже той, которую можно рассчитать на основании частот одинарных перекрестов. Особенно заметное снижение наблюдается при очень близком расположении генов. В этом случае кроссинговер в одном участке механически препятствует кроссинговеру в другом участке. Это явление получило название интерференции . С увеличением расстояния между генами величина интерференции падает. Эффект интерференции измеряется отношением фактической частоты двойных перекрестов к теоретически ожидаемой их частоте, в случае их полной независимости друг от друга. Это соотношение называется коинциденцией . Фактическая частота двойных перекрестов устанавливается экспериментально в ходе гибридологического анализа по частоте фенотипического класса двойных кроссоверов. Теоретическая частота, согласно закону вероятности, равна произведению частот двух одинарных перекрестов. Например, если в хромосоме имеются три гена а , b и с и кроссинговер между а и b идет с частотой 15%, а между b и с — с частотой 9%, то в случае отсутствия интерференции частота двойного кроссинговера равнялась бы 0,15 x 0,09 = 1,35%. При фактической частоте 0,9%, величина коинциденции выражается отношением и равняется:

0,009 = 0,69 = 69%
0,0135

Таким образом, в данном случае из-за интерференции реализовалось только 69% двойных перекрестов.

Среди 8 фенотипических классов, образующихся в Fа при наличии трех пар сцепленных признаков два класса двойных кроссоверов являются самыми малочисленными с учетом явления интерференции и в соответствии с законом вероятности.

Существование множественных перекрестов приводит к увеличению изменчивости гибридного потомства, так как благодаря им возрастает число генных комбинаций и, соответственно, число типов гамет у гибридов.

На определении частот одинарных, двойных, тройных и т.д. перекрестов основан принцип построения генетических карт. Генетическая карта — это схема, отражающая порядок расположения генов в хромосоме. За основу расчета расстояния между генами берется процент одинарного кроссинговера между ними. К нему добавляются поправки на величину двойного и более сложных перекрестов, которые уточняют расчет. Если мы имеем три гена, то порядок их взаиморасположения в хромосоме определяется на основании фенотипа класса двойных кроссоверов. При двойном кроссинговере идет обмен средним геном. Следовательно, признак, по которому двойные кроссоверы отличаются от родительских особей, определяется этим геном. Например, если гомозиготная серая длиннокрылая самка дрозофилы с красными глазами (все признаки дикого типа доминантные) скрещивалась с гомозиготным темным (рецессивная мутация black) самцом с редуцированными крыльями (рецессивная мутация) и яркими глазами (рецессивная мутация cinnabar), и в Fа самыми малочисленными парными классами (т.е. двойными кроссоверами) были серые мухи с яркими глазами и длинными крыльями и черные с красными глазами и редуцированными крыльями, то, следовательно, ген, контролирующий окраску глаз, является средним. Отрезок карты с этими тремя генами будет выглядеть следующим образом:

На генетической карте любой хромосомы отсчет расстояния начинается с нулевой точки — локуса первого гена — и отмечается не расстояние между двумя соседними генами, а расстояние в морганидах каждого последующего гена от нулевой точки.

Генетические карты составлены только для хорошо изученных в генетическом отношении объектов, как прокариотических, так и эукариотических, таких как, например, фаг l, E. coli, дрозофила, мышь, кукуруза, человек. Они являются плодом огромного и систематического труда многих исследователей. Наличие таких карт позволяет предсказывать характер наследования изучаемых признаков, а при селекционной работе — вести сознательный подбор пар для скрещивания.

Генетические доказательства наличия кроссинговера, полученные в опытах Т. Моргана и его коллег, получили прямое подтверждение на цитологическом уровне в 30-х гг. в работах К. Штерна на дрозофиле и Б. МакКлинток и Г. Крейтона на кукурузе. Им удалось сконструировать гетероморфную пару хромосом (пара Х-хромосом у дрозофилы и IV пара аутосом у кукурузы), в которой гомологи имели различную форму. Обмен участками между ними приводил к образованию разных цитологических типов этой пары хромосом, которые можно было идентифицировать цитологически (под микроскопом). Благодаря генетическому маркированию каждому цитологическому типу бивалента соответствовал определенный фенотипический класс потомства.

В 30-х гг. в слюнных железах дрозофилы Т. Пайнтером были обнаружены гигантские, или политенные, хромосомы. Благодаря своим крупным размерам и четкой структурной организации они стали основным объектом цитогенетических исследований. Каждой хромосоме свойствен специфический рисунок из темных полос (дисков) и светлых промежутков (междисков), соответствующих гетерохроматическим и эухроматическим участкам хромосомы. Постоянство этой внутренней структуры гигантских хромосом дало возможность проверить, насколько порядок генов, установленный на основании определения частоты кроссинговера, отражает действительное расположение генов в хромосоме. С этой целью проводится сравнение структуры нормальной хромосомы и хромосомы, несущей хромосомную мутацию, например выпадение или удвоение участка хромосомы. Такое сравнение полностью подтверждает соответствие порядка расположения генов на генетических картах их расположению на хромосомах. Графическое изображение гигантской хромосомы с указанием локализации генов в определенных ее участках называется цитологической картой.

Явление кроссинговера обнаружено не только в половых клетках, но и в соматических. Обычно гомологичные хромосомы в профазе митоза не коньюгируют и располагаются отдельно друг от друга. Однако еще в 1916 г. исследователям иногда удавалось наблюдать картины синапсиса гомологичных хромосом в митотической профазе с образованием фигур перекреста (хиазм). Это явление получило название соматического, или митотического, кроссинговера. На фенотипическом уровне о нем судят по мозаичному изменению признаков в некоторых участках тела. Так, у самок дрозофилы дикого типа, гетерозиготных по рецессивным мутациям yellow (желтое тело) и singed (опаленные щетинки), в результате соматического перекреста могут появиться пятна с рецессивными признаками. При этом, в зависимости от того, где произойдет перекрест: между указанными выше генами или за их пределами, образуется либо пятно с обоими мутантными признаками, либо с одним из них.



А: слева — половина груди нормальная (+), справа — мутантная без щетинок (аС); Б и В — мозаичные половинки груди, состоящие из участков ткани дикого типа (белая) и мутантной формы (черная).

Обычно при кроссинговере идет обмен одинаковыми по размеру гомологичными участками хромосом. Но изредка возможны несимметричные разрывы в хроматидах и обмен неравными участками, т.е. неравный кроссинговер. В результате такого обмена оба аллеля какого-либо гена могут оказаться в одной хромосоме (дупликация), а в другом гомологе возникает его нехватка. Подобное изменение обнаружено в Х-хромосоме дрозофилы в участке, содержащим доминантную мутацию Bar (В), определяющую развитие полосковидных глаз с уменьшенным числом фасеток (у гомозигот 70 вместо 700). Дупликация этого гена в результате неравного кроссинговера приводит к дальнейшей редукции числа фасеток (до 25). Цитологически неравный кроссинговер легко выявляется по изменению рисунка гигантских хромосом.

Перекрест хромосом, как сложный физиологический процесс, подвержен сильному влиянию внешних и внутренних факторов. Большое влияние на частоту кроссинговера оказывает структура хромосомы, в первую очередь наличие в ней крупных блоков гетерохроматина. Установлено, что у дрозофилы кроссинговер редко идет вблизи центромеры и на концах хромосом, что обусловлено присутствием прицентромерного и теломерного гетерохроматина. Плотная спирализация гетерохроматических участков хромосомы уменьшает расстояние между генами и препятствует их обмену. На частоту кроссинговера влияют различные хромосомные перестройки и генные мутации. При наличии в хромосоме нескольких инверсий они могут стать “запирателями” перекреста. У кукурузы обнаружены гены, нарушающие процесс коньюгации и тем самым препятствующие кроссинговеру.

У большинства изученных животных и растений мейотический перекрест осуществляется у обоих полов. Но есть отдельные виды животных, у которых кроссинговер идет только у гомогаметного пола, а у гетерогаметного пола отсутствует. Причем кроссинговер не происходит не только в половых хромосомах, но и в аутосомах. Подобная ситуация наблюдается у самцов дрозофилы и самок шелкопряда с кариотипом ХY. Однако у многих видов млекопитающих, птиц, рыб и насекомых гетерогаметность пола не сказывается на процессе кроссинговера.

На процесс кроссинговера влияет функциональное состояние организма. Установлено, что частота перекреста зависит от возраста, как и уровень аномалий в мейозе. С возрастом происходит снижение активности ферментативных систем, в том числе и тех, которые регулируют процесс обмена участками хромосом.

Частоту перекреста можно повысить или понизить влиянием на организм различных факторов внешней среды, таких как высокая и низкая температура, ионизирующие излучения, дегидратация, изменение концентрации ионов кальция, магния и др. в среде, действием химических агентов и т.п. В частности, установлено, что у дрозофилы частота кроссинговера возрастает с повышением температуры.

В заключение следует отметить, что процесс кроссинговера очень важен с эволюционной точки зрения. Он является механизмом, с помощью которого осуществляется генетическая рекомбинация и создаются новые благоприятные генотипы. Комбинативная изменчивость, наряду с мутационной, является основой для создания новых форм.

auto-shell.ru - Автомобильный портал - AutoShell