Адаптация микроорганизмов к условиям внешней среды. Бактерии

Биологическая адаптация (от лат. adaptatio - приспособление) - приспособление микроорганизма к внешним условиям в процессе эволюции, включая морфофизиологическую и поведенческую составляющие. Адаптация может обеспечивать выживаемость в условиях конкретного местообитания, устойчивость к воздействию факторов абиотического и биологического характера, а также успех в конкуренции с другими видами, популяциями, особями. Каждый вид имеет собственную способность к адаптации, ограниченную физиологией (индивидуальная адаптация).

Дезадаптация – какое-либо нарушение адаптации, приспособление организма к постоянно меняющимся условиям внешней или внутренней среды. Состояние динамического несоответствия между живым организмом и внешней средой, приводящее к нарушению физиологического функционирования, изменению форм поведения, развитию патологических процессов Полное несоответствие между организмом и внешними условиями его существования несовместимо с жизнедеятельностью. Степень дезадаптации характеризуется уровнем дезорганизации функциональных систем организма. В зависимости от характера функционирования, выделяют две формы дезадаптации: – непатологическая: поддержание гомеостаза возможно при режиме усиленного, но "нормального" физиологического функционирования; – патологическая: поддержание гомеостаза возможно только при переходе к патологическому функционированию.

Адаптации видов в рамках одного биоценоза зачастую тесно связаны друг с другом. Если адаптационный процесс у какого-либо вида не находится в равновесном состоянии, то эволюционировать может весь биоценоз (иногда - с негативными последствиями) даже в стабильных условиях окружающей среды.

Главное содержание адаптации, по мнению Т. Пилат, - это внутренние процессы в системе, которые обеспечивают сохранение её внешних функций по отношению к среде. Если структура системы обеспечивает ей нормальное функционирование в данных условиях среды, то такую систему следует считать адаптированной к этим условиям. На этой стадии устанавливается динамическое равновесие.

Примеры адаптации: у пресноводных простейших осмотическая концентрация протоплазмы выше, чем концентрация, окружающей воды. При поглощении воды в ней происходит постоянное опреснение. Нарушающееся при этом осмотическое равновесие регулируется деятельностью сократительной вакуоли, которая удаляет из тела избыточную воду. Некоторые простейшие способны, однако, приспособляться к существованию в более соленой и даже морской воде. При этом деятельность сократительной вакуоли у них замедляется и может даже совершенно прекратиться, так как в этих условиях выведение из организма воды повело бы к повышению в протоплазме относительной концентрации ионов и, в связи с этим, к нарушению в ней осмотического равновесия. Таким образом, в этом случае, механизм адаптации сводится к непосредственной физико-химической реакции протоплазмы. В других случаях механизм адаптации представляется более сложным и не всегда может быть сразу разложен на элементарные факторы. Таковы, например, адаптация животных к температурным условиям (удлинение шерсти млекопитающих под влиянием холода), к явлениям лучистой энергии (фототропизм растений); изменение окраски кожи холоднокровных, благодаря реакции пигментных клеток; сезонный диморфизм окраски птиц и млекопитающих; изменение их окраски в зависимости от климато-географических условий и т. п. Однако, и здесь механизм адаптации может быть, в конечном счете, сведен к физико-химическим реакциям протоплазмы. Явления адаптации тесно связаны с эволюцией микроорганизмов и представляют собою один из наиболее существенных факторов акклиматизации, борьбы за существование и мимикрии.

Адаптация микроорганизмов, аккомодация микроорганизмов, приспособление их к окружающей среде. Их строение, физиологические свойства и химимический состав находятся в зависимости как от наследственных свойств данного вида, так и от влияний окружающей среды. Последние заставляют микроорганизм изменяться. Изменения эти еще недавно считались случайными и, по учению Кона (Conn), мало существенными для основных черт микроорганизма, которые признавались незыблемыми. Однако, с течением времени сначала робко, а затем все решительнее, было выдвинуто учение об изменчивости микроорганизмов, как биологическом факторе, и в настоящее время изменения микроорганизмов уже не считаются только случайными, а признаются и более глубокими. Характер изменчивости микроорганизма находится в зависимости от двух факторов: от индивидуальной видовой стойкости данного микроорганизма и от глубины, размаха и силы воздействия окружающей среды. Некоторые виды микроорганизмов, как кислотоупорная группа, дифтерийная и грибковая формы, меньше изменяются и хуже приспособляются, в то время как кишечно-тифозная, капсулярная, кокковая, анаэробная группы легче подвергаются изменениям. Приспособляемость микроорганизмов прежде всего сказывается в их отношении к кислороду и окружающей температуре. Известно, что анаэробы могут быть приучены как к свободному кислороду, так и обратно. То же нужно сказать об отношении к окружающей температуре, а также к реакции среды, к действию света и химическому составу питательного материала. Одно условие должно быть соблюдено для выявления этой адаптации: постепенное воздействие новых факторов. Чем медленнее и постепеннее действуют новые условия, тем легче и совершеннее приспособляется микроорганизм. Это приспособление идет в различных направлениях. Окружающие условия заставляют микроорганизм становиться менее требовательным в своих физиологических функциях, ограничивать их до минимума и переходить в стадию анабиоза («скрытый микробизм»), для чего у него образуются споры, и он окружается непроницаемыми слизистыми, известковыми и соединительнотканными капсулами (кокки, туб. палочки и т. п.); или же микроорганизмы претерпевают морфологические изменения, теряя целые органы и части, особо чувствительные к обычным условиям (например, трипанозомы, приучаясь к мышьяку, теряют блефаробласты (Вербицкий)), и, таким образом, получаются новые расы микроорганизмов. Образование новых рас с новыми свойствами происходит особенно легко, когда микроорганизм встречается с новыми химическими веществами в организме, в котором он привык свободно размножаться. Когда в такой среде появляются вредные вещества, часть микроорганизмов погибает, а наиболее стойкие индивидуумы выживают и дают так называемые «стойкие» или «упорные» расы (Enrlich). Такая стойкость доказана в отношении различных химических соединений и алкалоидов (мышьяк, спирт, хинин).- Приспособляемость микроорганизмов может идти и в противоположном направлении - в сторону усиления их жизнеспособности и приобретения ими большей активности. Так, мало вирулентный микроорганизм под влиянием ослабления организма начинает быстро размножаться и вырабатывать токсины, которых у него раньше не было или было мало. Примером здесь могут служить многочисленные случаи так называемые эндогенных инфекций, когда пневмококк под влиянием простуды вызывает пневмонию или Bact. coli под влиянием погрешности в диете вызывает дизен-терийноподобное заболевание. Это «активирование» микроорганизма есть не что иное, как приспособление его к новым условиям. Явления приспособления особенно хорошо изучены и многочисленны там, где микроорганизм встречается с иммунным организмом или иммунными средами. Кроме указанных выше капсул, служащих микробу защитным слоем от внешней среды, у микроорганизма начинают вырабатываться аггрессины, которые делают его мало доступным для фагоцитов. Приспособляемость микроорганизмов идет так далеко, что они могут делаться стойкими даже по отношению к иммунным сывороткам. Борде (Bordet) еще в 1895 г. показал, как холерный вибрион может быть приучен к бактериолитической сыворотке. Рядом авторов доказана возможность приучить аглютинирующихся микроорганизмов к тому, что они перестают аглютинироваться. И наоборот, неаглютинабильные микроорганизмы могут быть превращены в аглютинирующихся, например, путем проведения через организм животных и даже при простых пересевах из среды на среду. Перестраивая свои морфологические и физиологические черты, микроорганизмы в зависимости от почвы, на которой они живут, и в зависимости от других микроорганизмов, рядом с ним размножающихся, может приобрести черты, присущие соседу, и превратиться в так называемый «парамикроба». Такой микроорганизм, как это доказал Розенау (Rosenow), может приобрести новые свойства, полученные им от сожительства с патогенным микроорганизмом, и сохранять их довольно долго по наследству. Так, например, стрептококк, выделенный при менингитах, вызванных диплококком Weichselbaum’a, приобретает способность давать менингит. Получается как бы подражание другому возбудителю. Это подражание выражается или в способности вызывать такое же заболевание или в приобретении новых антигенных свойств. Так, протей, живущий в организме сыпнотифозного больного, начинает аглютинироваться сывороткой больного, хотя он и не является возбудителем болезни. Из всех приведенных фактов ясно, какое большое значение имеют явления адаптации микроорганизмов для патологии и эпидемиологии.

Эволюция бактерий и ее медицинское значение. Микроорганизмы на Земле возникли примерно за три миллиарда лет до появления человека. В 1822 году Э.Дарвин предложил теорию эволюции, а через 100 лет русский биохимик А.Опарин (1920 г.) – теорию возникновения биологической жизни. В этой системе бактериям принадлежит весьма важное место. Первые, окруженные мембраной самореплицирующиеся формы биологической жизни (протобионты) были неспособны к фотосинтезу и получали энергию путем осуществления простых, одностадийных абиогенных окислительных реакций. Это продолжалось около 1.0 млрд. лет. Энергия (электрохимическая, термальная, фотохимическая), образующаяся в этих реакциях, сохранялась в определенных молекулах и использовалась для осуществления примитивных процессов. Формирование первичных молекул и реакций положило начало обменным процессам-анаболизму и катаболизму. Переход от протоклетки к прокариотной клетке произошел в промежутке 2.5-3 млрд. лет назад. В атмосфере планеты не было кислорода и первичные прокариоты были анаэробами. Аутотрофный путь фиксации СО 2 явился основой первичной продуктивности на планете. Смена восстановительной атмосферы на кислородную произошла между средним и поздним докембрием (2,8 млрд. лет назад). Для сравнения содержание кислорода в атмосфере планеты 800 млн. лет назад составляло около 1%, 400 млн. лет – уже было 10%, а в настоящее время – 21%. По мере изменения состава атмосферы стали формироваться факультативные фототрофные и гетеротрофные анаэробы, позднее возникли аэробные бактерии .

Бактерии явились не только первичными накопителями генов, но объектом их эволюционного усовершенствования. Скорость эволюции – это количество мутаций на 100 аминокислот молекулы определенного белка в течение 100 млн. лет . Она широко варьирует. На этом построена концепция молекулярных часов, декларирующая, что мутации постепенно аккумулируются в геноме и линейно временному периоду эволюции формируют новый сиквенс для дальнейшей дивергенции вида. Диаграмма, представленная на рис.3. позволяет отобразить эволюцию определенных групп бактерий и примерно установить эволюционное время, когда тот или иной вид (род) дивергировал от общего предка .

Скорость эволюции постоянна и зависит от многих факторов – скорости метаболических процессов, времени генерации, потоков движения информации и селективного давления. Например, дивергенция рода Salmonella и рода Escherichia coli от общего предка произошла примерно 100-140 млн лет назад. Геномы бактерий эволюционировали на протяжении более 50 миллиардов генераций аккумулируя мутации и приобретая новую генетическую информацию посредством горизонтального переноса генов без существенной перестройки предковых генов. В течение года геном сальмонелл приобретал чужеродной генетической информации примерно 16 кб/млн. лет, а кишечной палочки – 22 кб/млн.лет. В настоящее время их геномы отличаются на 25% . Значительная часть генома приобретена путем горизонтального переноса. В целом, геном бактерий варьирует по размерам от 0.6 до 9.4 Мб информации (в среднем от 3 до 5 Мб). Некоторые бактерии имеют две хромосомы (Leptospira interrogans serovar icterohemorrahgiae, Brucellae melitensis) . Прогрессивная эволюция бактерий происходила в нескольких взаимосвязанных направлениях – метаболическом, морфологическом (структурно-молекулярном) и экологическом. В природе имеется огромное разнообразие микроорганизмов из которого в настоящее время известно не более 5-7% их, а культивируемые в искусственных условиях бактерии составляют около 1%. Это означает, что мы еще только начинаем узнавать мир микробов.

Стратегии секвенирования генома. Каждая пара оснований генома является одним битом информации. Например, геном Haemophilus influenzae содержит 1 830 137, а геном Escherichia coli – 4 639 221 бит информации. Сравнительные аспекты секвенирования геномов бактерий позволяют определить наличие общих генов, регуляторных механизмов, установить эволюционные внутри и межвидовые связи и являются основой структурной и эволюционной геномики. Математическим анализом геномов микроорганизмов занимается новая наука – биоинформатика. Предметом исследований являются сиквенсы фрагментов или полных геномов бактерий с помощью разрабатываемых компьютерных программ и баз данных информации о нуклеиновых кислотах и белках .

На основе анализа строения геномов (секвенирования) сформировано 36-40 крупных таксонов (отделов). Члены каждого из них имеют общего предка, который на определенном этапе дивергировал от другого таксона-предшественника. Некоторые из отделов включают большее число видов известных бактерий, чем другие. Обычно это относится к тем из них, которые хорошо культивируются в лабораторных условиях. Наибольшее число видов бактерий (от 40 до 80%) описано среди таксонов протеобактерий, актинобактерий, грамположительных бактерий с низким содержанием Г+Ц. Вместе с тем в некоторых отделах культивируемые представители бактерий неизвестны. Следует отметить, что из 36-40 отделов царства Bacteria только представители 7 крупных таксонов способны вызывать заболевания у человека. Специализация и адаптация этих бактерий к организму животных привело к образованию блоков генов, контролирующих факторы патогенности (островки патогенности). Они могут локализоваться в хромосоме, плазмидах и, возможно, в фагах бактерий. Установление направления и порядка эволюции микроорганизмов на основе изменчивости их геномов является перспективным направлением молекулярной эпидемиологии .

Почему так часто случается - вы стремитесь исправить неугодное вам положение вещей, но получаете только кратковременную передышку, а потом вас снова настигает привычное. Глупцы, обманщики, неудачники. Нет денег, нет счастья, нет любви. Всё отвратительно плохо или безумно грустно.

Одна из причин «замкнутого круга» в том, что внешняя реальность отражает события внутреннего мира. Для этого обязательно находятся объекты: люди и ситуации. Собственная внешность тоже подходит. Даже явления природы годятся на крайний случай.

Как это выглядит

«Зима называется. Конец декабря, а снега как не было, так и нет»: недовольство чувствуете?

«Куда ты прёшь, господи! Вперёд смотреть надо! Уткнутся в телефон - никого вокруг не видят!»: сердится человек, да?

«Тачек крутых накупили, а ПДД выучить забыли»: скорее всего, завидует.

«Камеры нужно установить везде - и в подъезде, и в лифте, и перед квартирой»: похоже, боится.

«Ничего мне не помогает и не поможет, бесполезно лечиться»: так проявляет себя отчаянье.

«Наращу волосы, буду выглядеть совершенно по-другому и тогда…»: но потом, оказывается, надо ещё подкорректировать губы, уменьшить нос, увеличить грудь и т. д.

Так может заявлять о себе внутренний дефицит, недостаточность. Когда речь идёт о важных решениях, вполне себе хороший тон - обдумать не только рациональные «за» и «против», но и эмоциональные. То есть услышать - как там внутри. В повседневной жизни задумываться об этом некогда, а жаль.

Что происходит

Мы «вешаем» своё состояние на кого-то или на что-то вовне. Не специально. Так наше эго защищается от чего-то тревожного. Когда защита используется без фанатизма - ничего страшного, таким образом вы перевариваете внутреннюю ситуацию. Возьмёшься вдруг и наведёшь порядок в ящиках или во всём доме наконец. Потом обнаруживаешь, что и мысли «улеглись по полочкам». Другое дело, когда защитный процесс приобретает масштабы бедствия, и вы незаметно для себя постоянно избавляетесь от невыносимых (по каким-то причинам) чувств, «раздавая» их направо и налево. Потому что обратная сторона процесса такова: чем больше внутреннего содержания вы выбрасываете, тем сильнее истощается ваше собственное «Я». Вернёмся к примеру с уборкой. Попытка справиться с внутренним хаосом, наводя чистоту в квартире, может превратиться в навязчивое повторение. Человек спать не ляжет, пока не перемоет полку за полкой, комнату за комнатой, ботинок за ботинком, и так - изо дня в день. Только легче ему не становится.

Почему люди избегают вас

Одна беда чрезмерного проецирования - сами того не желая, мы разоряем себя. Избавляясь от непереносимых чувств, мы оставляем внутри себя пустоту. Любой эмоциональный всплеск приводит к колоссальной потере энергии. Другая беда - мы разрушаем отношения с окружающими. Ни природа, ни погода, ни собственная внешность, ни организм не смогут возразить нам. Но люди - близкие и не очень - постараются свести общение на нет. Никто не хочет быть мишенью-сосудом для чужой беспомощности, неуверенности, тоски или гнева. (Хотя и им не мешало бы задуматься над причинами проявления в их жизни подобных негативных моментов). Когда мы только и делаем, что проецируем, наши отношения с близкими сначала становятся до предела напряжёнными, а потом всё летит в тартарары. Мы остаёмся в одиночестве.

Как же быть

Остановитесь на минутку и посмотрите вокруг, проанализируйте свою жизнь - как вы оказались в этих обстоятельствах и условиях, которые тяготят вас и создают негативные эмоциональные реакции, и почему это происходит. Как правило, в жизни мы получаем лишь то, что заслуживаем. Мы сами создаём свою реальность. И пока мы не признаём в себе виновника всех тех ситуаций, которые обусловили наше недовольство, мы не сможем сделать шаг в сторону изменения жизни к лучшему. Это не всегда легко признаться самому себе, что не другие люди создают нам проблемы, как мы привыкли думать (или нам так удобно думать?!), а мы сами! Как мы обычно избавляемся от проблем в жизни? Не устраивает работа и коллектив - увольняемся, проблемы в семье - разводимся, с осуждающими нас или просто неприятными нам людьми (опять же задумайтесь, почему они нам неприятны?) стараемся не общаться. Мы сами убегаем от тех ситуаций, которые даны нам для того, чтобы мы вынесли из них определённый урок, ибо пока этот урок не будет пройден, ситуации будут повторяться только в новых условиях, в которые мы «убежали от проблем». Они нас там уже ждут с распростёртыми объятиями. Мы пришли в этот мир не для прозябания в удовлетворяющих наше эго, комфортных условиях, а для развития. И ни о каком развитии речи быть не может, если мы не работаем над собой, а только отмахиваемся от того, что принуждает нас изменяться. Легче же указать другим на их недостатки, нежели отыскать их в себе и с себя же потребовать в первую очередь! «Измени себя - изменится мир вокруг» - основное правило, которое должно сопровождать нас в жизни. Ведь мир - это зеркало. Что мы видим вокруг, то отражает наше внутренне состояние. Общество, в котором мы находимся, обстоятельства, условия жизни - всё это прямо или косвенно указывает нам на положение вещей в нашей жизни.

Не стоит также забывать, что Вселенная пребывает в гармонии. Поэтому при нарушении «баланса» в нашей жизни проявляются такие ситуации, которые призваны «выправить» создавшееся нарушение равновесия. Нужно осознанно перестать сетовать на судьбу и преследующие вас неприятности. Помните, что любые трудности и лишения в будущем обернутся для вас благом. В зависимости от того, чем наполнен ваш внутренний мир, то и откликнется извне определенными переменами. Если вас переполняют негативные эмоции, раздражение и обиды, то не ждите от окружения любви и понимания, если же в вашем сердце живет добро - вы излучаете свет, а значит, он же вам и отразится.

Не бойтесь меняться, начните с малого. Не бойтесь говорить близким людям, что вы их любите, дарите прохожим улыбки! Просто любите жизнь, и она ответит вам тем же!

Поверьте, это только начало большого пути. Невозможно не упомянуть здесь об очень важном моменте. Вы можете попасть ещё в одну ловушку - ожидание результата. Конечно, важно, что является стимулом к вашим переменам, но если вы, совершив очередное благое дело, будете ждать мгновенный отклик от мира, то имейте в виду - вы заблуждаетесь. Помните о законе равновесия - ничто не пройдёт бесследно, за всё будет воздано… в своё время. Если ничего не происходит, значит, мотивация была эгоистичной: «вот я сделаю благое дело, а мне за это «подарок» от Вселенной». И не важно, какого качества «подарок» вы ожидаете, в виде материального блага или духовного. Важно, что вы ждёте это для себя! Именно ваши истинные побуждения - это то, чем будет руководствоваться Вселенная, отмеряя вам в награду то или иное благо.

Как гласит народная поговорка: «Для себя жить - тлеть, для семьи - гореть, для народа - светить». Как только ваша мотивация к переменам будет обусловлена желанием творить благо для всех, а не только для себя или близкого круга, как только вы осознаете себя частью целого и обратите все стремления изменить жизнь к лучшему, ко благу всех живущих, не ограничиваясь своим укромным мирком, с этого момента можете быть уверены - вы на верном пути. Это уже очень высокий уровень осознанности, но теперь можно с уверенностью сказать, что выход из пресловутого замкнутого круга не за горами.

5 ТОЛЕРАНТНОСТЬ МИКРООРГАНИЗМОВ К ФАКТОРАМ ОКРУЖАЮЩЕЙ СРЕДЫ

Развитие и жизнедеятельность микроорганизмов тес-но связаны с окружающей средой. Проявление их дея-тельности зависит от изменения или особенностей этой среды.

Каждый вид микроорганизма способен расти, развиваться и размножаться в рамках внешних условий, которые отражают их уровень толерантности.

Экологические факторы среды многочисленны и разнооб-разны. Обычно их разделяют на физические, химические и биологические.

Микроорганизмы лучше адаптируются к экстремальным физическим и химическим факторам окружающей среды, чем животные и растения. Некоторые бактерии сохраняют жизнеспособность при температуре до +104 ° С, в диапазоне рН от 1 до 13, давлении от 0 до 1400 атм., длительно живут в бидистиллированной воде и в насыщенных растворах солей, не погибают при интенсивном облучении, в присутствии тяжелых металлов, антисептиков, антибиотиков, дезинфектантов. В то же время для каждого вида есть наследственно обусловленные оптимальные уровни и критические границы толерантности микробов к физическим, химическим и биологическим факторам.

Толерантность к физическим факторам окружающей среды

К физическим факторам внешней среды, положитель-но или отрицательно влияющим на жизнедеятельность микроорганизмов, относятся: влажность среды, концентрация в ней растворенных веществ и ее осмотическое давление, температура, солнечный свет и различные формы лучистой энергии.

Влажность среды. Некоторые виды микробов весьма чувствительны к недостатку влаги. Например, нитрифи-цирующие и уксуснокислые бактерии после высушива-ния быстро отмирают. Другие, наоборот, могут сохра-няться в высушенном состоянии в течение нескольких месяцев и даже лет (стафилококки, молочнокислые бак-терии, дрожжи). Особенно устойчивы к высушиванию споры бактерий и плесневых грибов. Они могут сохра-няться в высушенном состоянии десятки лет. Высуши-вание в вакууме при низкой температуре с последую-щим хранением в безвоздушной среде сохраняет жизнедеятельность микробов длительное время (лиофильная). Этот метод широко используется для длитель-ного хранения микробных культур. Так, некоторые бо-лезнетворные бактерии (кокки) сохранялись в подоб-ных условиях 25, а микобактерии - 17 лет.

В почве различные группы микроорганизмов наибо-лее интенсивно развиваются при влажности, близкой к 60 % полной влагоемкости.

К наиболее влаголюбивым почвенным бактериям от-носятся азотфиксирующие (азотобактер и клубенько-вые). При высушивании почвы микробиологи-ческая активность понижается или полностью подавля-ется. Неспособность микроорганизмов развиваться в условиях недостаточной влажности используется для пре-дохранения от порчи продуктов и кормов путем высуши-вания. Сушке подвергают мясо, рыбу, овощи, фрукты, молоко и другие продукты, а также сено.

Концентрация растворенных в среде веществ. В есте-ственных условиях микроорганизмы живут в растворах с разной концентрацией растворенных веществ, а, следо-вательно, с неодинаковым осмотическим давлением.

Повышение концентрации солей в среде выше оптимума нарушает нормальный обмен веществ между клеткой и внешней средой. В этом случае вода выходит из клетки, цитоплазма отходит от клеточной оболочки (плазмолиз), поступление в клетку питатель-ных веществ приостанавливается. В таком состоянии микроорганизмы довольно быстро погибают и лишь некоторые способны длительно сохраняться. Так, сущест-вуют бактерии, которые адаптировались к высоким кон-центрациям солей (около 29 %). Эти бактерии называют галофильными («любящими» соль).

Губительное действие высоких концентраций солей на микроорганизмы нашло применение и в практиче-ской деятельности человека. Оно лежит в основе кон-сервирования многих пищевых продуктов (мясо, рыба) в крепких растворах соли. Большинство гнилостных бак-терий прекращает развитие уже при 5-10 %-ной кон-центрации NaCl в среде (Proteus vulgaris , Bacillus mesentericus ). Однако для получения более надежных результатов употребляют более концентрированные растворы поваренной соли - 20-30 %.

Для создания высокого осмотического давления в жидкости, кроме хлористого натрия, широко используют сахара, но в концентрациях, превышающих 70 %.

Температура. Температура среды - один из важней-ших экологических факторов, влияющих на жизнь микробов. Каждый вид микроорганизмов может развиваться лишь в опре-деленных пределах температуры.

По отношению к температуре микроорганизмы обыч-но подразделяются на три группы: психрофильные, мезофильные и термофильные.

К психрофильным (греч. psichrio - холодный, phileo - люблю) относятся микроорганизмы, приспосо-бившиеся и развитию при низкой температуре. Это плес-невые грибы, светящиеся бактерии, бактерии холодных водоемов, ледников и т.п. Для них минимальная тем-пература составляет от 0 до 10 °С, оптимальная - около 10 °С и максимальная 20-30 °С. Некоторые виды способны расти даже при температуре ниже 0 °С.

Вообще к низким температурам микроорганизмы малочувствительны. Ряд исследователей доказали, что бактерии сохраняют жизнеспособность после обработки их в течение нескольких часов жидким воздухом (-182, - 100 °С) или даже жидким водородом (-252 °С). Низкие температуры приостанавливают жиз-недеятельность микроорганизмов, поэтому предупреж-дают порчу охлажденных мяса, рыбы, масла, молока и других продуктов. Повторное замораживание после оттаивания губи-тельно действует на микробы. Психрофильные бактерии спор не образуют.

Мезофильные бактерии (греч. inesos - средний) развиваются при средних температурах. К ним относятся большинство сапрофитов и все патогенные микробы.

Для них температурный минимум лежит в пределах 0- 10°, С оптимум - при 25-35 °С и максимум - при 40-50 °С.

Термофильные бактерии (греч. termos - теп-лый) развиваются при сравнительно высокой температу-ре Температурный минимум для них находится около 30° С, оптимум - 50-60 °С, максимум - 70-80 °С.

Термофильные микроорганизмы распространены в го-рячих минеральных водах и принимают деятельное уча-стие в процессах самосогревания навоза, силоса, влаж-ного зерна.

Высокие температуры вызывают гибель микробной клетки в результате свертывания (коагуляции) белков цитоплазмы и инактивации ферментов. Большинство бесспоровых бактерий отмирают при нагревании до 60- 70 °С в течение 15-30 мин, а при нагревании до 80- 100 °С за время от нескольких секунд до 1-3 мин. Во влажной среде бактерии при высокой температуре гиб-нут скорее, чем в сухой, так как пар способствует быст-рой коагуляции белка. Споры многих бактерий выдержи-вают нагревание до 100° С в течение нескольких часов. Даже наиболее устойчивые споры во влажной среде при 120 °С погибают через 20-30 мин, а при действии сухого жара (160-170 °С.) - спустя 1-2 ч.

На губительном действии высоких температур осно-ваны два способа уничтожения бактерий: пастеризация и стерилизация.

При пастеризации жидкость нагревают до 60-70 °С в течение 20-30 мин или до 70-80 °С в течение 6-10 мин, при этом погибают только вегетативные формы бактерий. Пастеризацию применяют преимущественно для сохранения молока, вина, икры, фруктовых соков и некоторых других продуктов.

Под стерилизацией подразумевают освобожде-ние какого-либо предмета или вещества от всех живых существ. Это достигается нагреванием до 100-130 °С в течение 20–40 мин.

Влияние света. Прямой солнечный свет убивает поч-ти все виды бактерий, за исключением пурпурных и фо-тобактерий. Под действием прямых солнечных лучей бактерии гибнут за несколько минут или часов.

Биологическое действие солнечного света на микро-бы обусловлено находящимися в нем ультрафиолетовы-ми лучами. После проникновения в клетку они, адсорбируясь жизненно важными частями, белками и нуклеиновыми кислотами, вызывают фотохимические и окисли-тельные процессы, губительно действующие на микроорганизмы. Ультрафиолетовые лучи убивают через не-сколько минут и вегетативные формы и споры.

В биологическом отношении наиболее интересны ульт-рафиолетовые лучи с длиной волны от 280 до 230 нм. Они обладают выраженным бактериостатическим и бактерицидным действием. В зависимости от дозы облуче-ния и вида микроорганизма действие ультрафиолетовых лучей может быть летальным или мутагенным.

Лампы, испускающие ультрафиолетовые лучи с дли-ной волны 254 нм, широко применяют для стерилизации посуды, дезинфекции воздуха в больницах и операционных, в школах, в борьбе с долгоносиком, поражающим зерно. Ультрафиолетовые лучи используются и для стерилизации воды, молока, материалов, разрушающихся при действии высоких температур.

Влияние радиации, рентгеновского излучения и электричества. Лучи радия и рентгена в малых дозах и при непродолжительном действии стимулируют размножение некоторых микробов, в больших же дозах убивают их. Электрический ток высокой частоты приводит к гибели микроорганизмов. Особенно сильное действие на них оказывают токи ультравысокой частоты.

Влияние механических сотрясений и высоких давле-ний. Механические воздействия (сильные и частые толч-ки) уничтожают большинство микробов. Встряхивание в шюттель-аппарате с песком или со стеклянными бусами резко уменьшает число жизнеспособных бактерий. Само-очищение водоемов от микроорганизмов частично проис-ходит вследствие движения воды в реках и ручьях. Высокие давления слабо влияют на микроорганизмы, отдельные виды бактерий могут нормально жить и раз-множаться в морях на глубине 9 км, где давление дости-гает 9×10 4 кПа. Некоторые виды дрожжей, плесневых грибов и бактерий переносят давление и 3×10 5 кПа.

Толерантность к химическим факторам окружающей среды

К химическим факторам, оказывающим влияние на жизнедеятельность микроорганизмов, относятся: состав и реакция среды, окислительно-восстановительные усло-вия среды.

Состав среды. Химические соединения могут быть полезными для микроорганизмов и использоваться как питательные вещества или неблагоприятными - анти-микробными (бактерицидными), которые угнетают или убивают микроорганизмы. Слабые растворы усиливают жизнедеятель-ность микробов. Более сильные растворы убивают микроорганизмы лишь в вегетативной стадии, очень кон-центрированные уничтожают и споры. Чувствительность различных микробов к одному и тому же химическому соединению неодинакова. Некоторые вещества оказыва-ют вредное действие на одни группы микроорганизмов и являются безвредными для других.

Из неорганических веществ наиболее ядовиты для микроорганизмов соли тяжелых металлов (ртути, меди, серебра). При их концентрации 1:1000 большинство бактерий погибает в течение нескольких минут. Бактери-цидное действие оказывают хлор, йод, перекись водоро-да, марганцовокислый калий. Из минеральных кислот этими свойствами обладают сернистая, борная и некото-рые другие кислоты.

Сильными ядами для микробов являются фенол (кар-боловая кислота), креозол, формалин. В различной сте-пени токсичны спирты и некоторые органические кисло-ты (салициловая, масляная, уксусная, бензойная).

На губительном влиянии антисептиков на бактерии основано копчение мяса и рыбы, во время которого продукт пропитывается дымом, содержащим ле-тучие соединения, в частности, формальдегид, фенолы, смолы.

Реакция среды. Реакция среды является существенным химическим фактором, влияющим на жизнедеятельность микроорганизмов. Величина рН для нейтральной среды равна 7,0, для кислой - 0-6,0 и щелочной - 8,0-14,0. Отношение микробов к реакции среды очень разнообразно. Если одни могут развиваться в широких пределах величины рН, то для развития других микроорганизмов колебания рН должны быть незначительны.

Для многих плесневых грибов и дрожжей наиболее благоприятна среда с рН 3,0-6,0; большинство бактерий лучше развивается в нейтральной или слабощелочной среде (7,0-7,5). Очень кислая реакция на бактерии дей-ствует губительно.

Исключение представляют бактерии, которые сами образуют кислоту (уксуснокислые, молочнокислые, ли-моннокислые и маслянокислые).

Микроорганизмы, живущие в почве или водоемах, встречаются со значительным колебанием рН, поэтому они приспособились к широкому диапазону значений рН. И, наоборот, патогенные микроорганизмы, живущие в теле человека или животного, могут развиваться в сравнительно узком диапазоне рН.

Окислительно-восстановительные условия среды. Раз-витие микроорганизмов находится в тесной связи с окис-лительно-восстановительными условиями среды, обозна-чаемыми условно символом r Н 2 . Он представляет собой отрицательный логарифм давления молекулярного во-дорода и выражает степень аэробности в среде. Если сре-да насыщена молекулярным водородом, то r Н 2 равно нулю. При равновесии окислительных и восстановитель-ных процессов в среде r Н 2 равно 28. При насыщении сре-ды кислородом r Н 2 равно 41. На окислительно-восстановительный потенциал среды оказывает влияние аэрация. Различные микроорганизмы имеют кардинальные точки окислительно-восстановительных условий - мини-мум оптимум и максимум, которые определяют их раз-витие.

Потребность микроорганизмов в кислороде очень раз-лична. Анаэробы могут размножаться при низких значе-ниях r Н 2 - от 8 до 10. Аэробы размножаются в диапазо-не r Н 2 от 10 до 30. Промежуточные формы (факульта-тивные анаэробы) могут развиваться в широких преде-лах r Н 2 - от 0 до 30.

Регулируя окислительно-восстановительные условия в среде, можно не только действовать на рост и развитие микроорганизмов, но и влиять на характер физиологи-ческих и биохимических процессов, вызываемых микро-организмами.

Толерантность к биологическим факторам среды

Типы взаимоотношений микробов в биоценозах.

Микроорганизмы жестко конкурируют между собой. Это связано с тем, что обитающие в конкретном биоценозе микробы обладают принципиально сходными потребностями в источниках энергии и питания. Каждый микроорганизм приспосабливается не только к неживым субстратам, но и к другим окружающим его организмам. Подобная адаптация иногда приводит к приобретению особых метаболических свойств, наделяющих обладателя способностью занимать специфические ниши. Например, нитрифицирующие бактерии могут расти без органических источников энергии, окисляя аммиак или нитриты в качестве источника энергии в отсутствие света; другие организмы в подобных условиях не развиваются. Поэтому нитрифицирующие бактерии не испытывают биологической конкуренции. Значительная часть бактерий участвует в конкурентной борьбе, адаптируясь к сосуществованию с другими формами жизни либо вступая с ними в противодействие.

Симбиоз. Примером симбиоза могут служить взаимоотношения между некоторыми молочнокислыми бактериями и дрож-жами (молочнокислые бактерии, продуцируя молочную кислоту, создают условия, благоприятные для роста дрожжей, а продукты жизнедеятельности дрожжей - витамины стимулируют развитие молочнокислых бакте-рий), азотфиксирующими микробами и целлюлозоразлагающими бактериями, сожительство аэробов, поглощаю-щих кислород, с анаэробами и др. Подобного рода взаимоотношения часто наблюдаются между микроорганиз-мами и растениями (например, симбиоз клубеньковых бактерий с бобовыми растениями, микориза - сожитель-ство различных грибов с корнями растений), а также между микробами и животными.

Взаимоотношения, при которых микроорганизм располагается вне клеток хозяина (более крупного организма), известны как эктосимбиоз ; при локализации внутри клеток - как эндосимбиоз .

Типичные эктосимбиотические микробы - Escherichia coli , бактерии родов Bacteroides и Bifidobacterium , Proteus vulgaris , a также другие представители кишечной микрофлоры.

Взаимоотношения симбиотического характера имеют следующие формы.

Метабиоз - такое существование, когда продукты жизнедеятельности одних видов микробов представ-ляют собой материалы для питания и развития других видов. Например, сапрофиты расщепляют, натуральные белки до пептонов, аминокислот и других, более простых соединений. А эти продукты служат исходным материа-лом для нитрифицирующих бактерий, которые переводят аммиачные соли в азотистую, а затем в азотную кис-лоту.

Дрожжи превращают сахара в этиловый спирт, а ук-суснокислые бактерии окисляют его в уксусную кислоту. Эта форма взаимоотношений распространена среди поч-венных микробов и лежит в основе круговорота веществ в природе.

Комменсализм (от лат. соm + mensa - сотрапезники) - разновидность симбиоза, при которой выгоду извлекает только один партнер (не принося видимого вреда другому). Микроорганизмы-комменсалы колонизируют кожные покровы и полости организма человека (например, желудочно-кишечный тракт), не причиняя «видимого» вреда; их совокупность - нормальная микробная флора (естественная микрофлора). Типичные эктосимбиотические организмы-комменсалы - кишечная палочка, бифидобактерии, стафилококки, лактобациллы. Многие бактерии-комменсалы принадлежат к условно-патогенной микрофлоре и способны при определённых обстоятельствах вызывать заболевания макроорганизма (например, при внесении их в кровоток во время медицинских манипуляций).

Мутуализм (от лат. mutuus - взаимный) - взаимовыгодные симбиотические отношения. Так, микроорганизмы вырабатывают БАБ, необходимые организму хозяина (например, витамины группы В). При этом обитающие в макроорганизмах эндо- и эктосимбионты защищены от неблагоприятных условий среды (высыхания и экстремальных температур) и имеют постоянный доступ к питательным веществам. Из всех видов мутуализма наиболее удивительно культивирование некоторых грибов насекомыми (жуками и термитами). С одной стороны, это способствует более широкому распространению грибов, с другой - обеспечивает постоянный источник питательных веществ для личинок.

Сателлизм . Некоторые микроорганизмы способны выделять метаболиты, стимулирующие рост других микроорганизмов. Например, сарцины или стафилококки выделяют ростовые факторы, стимулирующие рост бактерий рода Haemophilus . Нередко совместный рост нескольких видов микробов активирует их физиологические свойства. Подобные взаимоотношения известны как сателлизм (от лат. safeties - сопровождающий) (рис. 6).

Рис. 6. Синергизм у микробов – вокруг агарового блока с культурой актиномицета видна зона стимуляции роста плесневого гриба.

Антагонизм (антибиоз) - Ситуации, когда один микроорганизм угнетает развитие другого, известны как микробный антагонизм (от греч. antagonizmai - соперничество) и отражают сложившиеся эволюционно формы борьбы микроорганизмов за существование (то есть за источники питания и энергии).

Антагонистические взаимоотношения особенно выражены в местах естественного обитания большого числа различных видов и типов микроорганизмов (например, в почве или ЖКТ), имеющих одинаковые пищевые и энергетические потребности. При этом воздействие на конкурента может быть пассивным или активным. В первом случае микроорганизмы быстрее утилизируют субстрат, лишая соперника «сырьевых ресурсов»; во втором - «объявляют войну до полного уничтожения». Формы истребления могут быть вариабельными - от банального поглощения более мелких видов до выделения высокоспецифичных продуктов, токсичных для конкурентов (рис. 7).

Рис. 7. Антагонизм у микробов – вокруг агарового блока с культурой актиномицета видна зона подавления роста стафилококка.

Губительное действие микроорганизмов-антагонистов связано с накоплением ими в среде продуктов жизнедеятельности или с выделением в нее определенных биологически активных веществ - анти-биотиков.

В результате такого неблагоприятного воздействия жизнедеятельность одного из видов ослабляется или он погибает.

Молочнокислые бактерии являются антагонистами гнилостных бактерий, так как молочная кислота тормо-зит развитие последних. Обыкновенная почвенная микрофлора угнетает болезнетворные для человека микро-организмы.

Антагонизм наблюдается также между растениями и микроорганизмами. Растения вырабатывают вещества, токсичные для бактерий, грибов и простейших. Эти вещества обладают различными свойствами и неодинако-вы по химической природе, силе действия и т. д. Впервые они выявлены советским ботаником В. П. Токиным в 1928 г. и названы фитонцидами (phyton - растение, caedo - убиваю).

Таким образом, зона толерантности микробного мира поистине грандиозна, ее границы часто находятся на предельных значениях экологических факторов. Эта особенность микроорганизмов обеспечивает им практически беспредельное развитие на всей планете.

Вопрос об изменении природы организмов под влиянием условий жизни ставился уже давно.

Однако, как указывает Тимирязев, лишь в «Философии зоологии» (1809) Ламарка вопрос о происхождении организмов был впервые освещен не мимоходом, а со всей необходимой широтой охвата и во всеоружии научных знаний того времени.

Ламарк придавал внешним условиям и упражнению колоссальное значение в изменении формы и организации животных. Объясняя целесообразность их строения, он отвел значительную роль «внутренним чувствам» и «стремлениям» животных. Ожесточенная критика данного положения привела в свое время к необоснованному опорочиванию всего учения Ламарка.

Высоко ценил взгляды Ламарка наш великий ученый Мечников. В своей известной работе «Очерк вопроса о происхождении видов» он называет теорию Ламарка замечательной.

Мечников считал, что наука уже к началу XX в. доказала наследуемость приобретенных организмом свойств: «Высказанный им (т. е. Ламарком) взгляд на значение приспособления животных к окружающим условиям и на роль наследственности в передаче приобретенных признаков признается всецело и ныне». В известной работе «Исторический метод в биологии» Тимирязев пишет: «Глубоко новаторские мысли, щедро рассеянные на страницах «Философии зоологии», остались заслоненными неудачной попыткой объяснить целесообразность строения животных организмов и разделили ее участь. Мы умышленно подчеркиваем слова «животных организмов», потому что по отношению к растению эта теория «стремлений», «внутреннего чувства», порождающих соответствующий орган, конечно, не нашла применения, и здесь Ламарк остался строгим ученым, не покидавшим почвы наблюдаемых фактов».

Крупнейшим этапом в науке о развитии органического мира было появление эволюционного учения Дарвина, давшего верную основу теории развития растений и животных. Дарвин материалистически объяснил встречающуюся на каждом шагу так называемую целесообразность устройства форм и поведения растений и животных. Большое значение в новообразовании форм животного и растительного царства Дарвин отводил естественному и искусственному отбору.

Как отмечает Тимирязев, Дарвин трактовал понятие о естественном отборе широко - метафорически. Данное положение следует подчеркнуть, так как впоследствии некоторые исследователи, разделявшие концепцию формальных генетиков, дарвиновское понятие о творческом отборе пытались заме нить положением, низводящим отбор до роли сита.

Между тем отбор в понимании Дарвина - это отбор живых организмов, продолжающих жить и изменяться, как правило, в начатом направлении. Дарвин не раз указывал, что изменчивость идет в направлении отбора. «Без отбора и соответствующего содержания, никогда не появились бы те породы животных и сорта растений, которые созданы сельскохозяйственной практикой».

Таким образом, естественный и искусственный отбор должны расцениваться как создатели, творцы новых форм живых существ. Данный взгляд воспринят советскими биологами.

Эволюционное учение не могло быть развито Дарвином во всех деталях. Так, он по существу не проанализировал причин, порождающих изменения в природе живых существ, хотя и указывал на большую роль условий среды в их появлении. К концу своей жизни Дарвин писал: «Я все же… убежден, что измененные условия дают толчок изменчивости…».

Дарвин высоко ценил работы Ламарка. По этому поводу Энгельс пишет: «Ни Дарвин, ни его последователи среди естествоиспытателей не думают о том, чтобы как-нибудь умалить великие заслуги Ламарка: ведь именно Дарвин и его последователи были первые, кто вновь поднял его на щит».

Говоря о недочетах учения Дарвина, Энгельс отмечал: «Но дарвинизм «производит свои превращения и различия из ничего. Действительно, когда Дарвин говорит об естественном отборе, то он отвлекается от тех причин, которые вызвали изменения в отдельных особях, и трактует прежде всего о том, каким образом подобные индивидуальные отклонения мало-помалу становятся признаками известной расы, разновидности или вида… Однако толчок к исследованию вопроса, откуда собственно возникают эти превращения и различия, дал опять-таки не кто иной, как Дарвин».

Мичурин и Лысенко, творчески развившие дарвинизм, пополнили только что указанный пробел учения Дарвина, отметин приспособительный характер изменения организмов.

К этому мнению склонялись такие выдающиеся русские ученые, как В. Ковалевский, Тимирязев и Павлов, признавая непосредственное влияние условий существования организмов на их наследственную природу.

Тимирязев писал, что сама наследственность, в конечном итоге, есть приобретенное свойство, и вопрос заключается лишь в том, когда именно возникают те или иные изменения, «Целесообразность органических форм может быть объяснена только историческим процессом их образования».

Мичурин говорит: «Каждый орган, каждое свойство, каждый член, все внутренние и наружные части всякого организма обусловлены внешней обстановкой его существования. Если организация растений такова, какова она есть, то это потому, что каждая ее подробность исполняет известную функцию, возможную и нужную только при данных условиях. Изменись эти условия - функция станет невозможной или ненужной, и орган, выполняющий ее, постепенно атрофируется».

Много сделано Лысенко в области анализа причин, определяющих наследственность и ее изменчивость. Наследственность есть как бы концентрат условий внешней среды ассимилированных растительными организмами в ряде предшествующих поколений», пишет Лысенко. «Изменение наследственности обычно является результатом развития организма в условиях внешней среды, в той или иной мере не соответствующих природным потребностям, т. е. его наследственности. Изменения условий жизни вынуждают изменяться развитие растительных организмов. Они являются первопричиной изменения наследственности.

Авакян (1948) указывает:

«Если необходимо изменить те или иные этапы развития организма, нужно изменить условия завершения процесса данной стадии, предоставив процессу те условия, в сторону которых задумано изменить наследственность потомства данного организма.

Из фактов, приведенных к этой системе взглядов, и дано основное положение в учении акад. Т. Д. Лысенко, что изменение наследственности организма всегда идет адекватно (соответственно) воздействию внешних факторов, вызывающих изменение. По своему характеру изменения всегда приспособительны, но для потомства данных организмов они могут быть полезными, вредными или безразличными, в зависимости от отношения данных изменений ко всем условиям жизни в целом».

«Относительная целесообразность, гармоничность растений и животных в естественной природе создавались только естественным отбором, т. е. наследственностью, ее изменчивостью и выживаемостью».

Лысенко развивает и углубляет теорию дарвинизма раскрытием причин тех или иных явлений, управление которыми требуется сельскохозяйственной практикой. Этим воплощается в жизнь великий принцип единства теории и практики.

Воззрения советской школы дарвинистов, как уже указывалось, должны быть противопоставлены представлениям Вейсмана-Моргана. Полностью отвергая возможность изменения природы организмов под влиянием условий жизни, морганисты сводят эволюцию к появлению случайных мутаций. Способность передавать по наследству те или иные признаки приписывается при этом особому веществу, локализованному в ядре клетки.

Сессия ВАСХНИЛ, состоявшаяся в августе 1948 г., осудила взгляды морганистов и показала их несостоятельность. Более очевидной стала и реакционная сущность морганизма, утверждающего существование «внутренних факторов», управляющих развитием организма и действующих без участия внешней среды.

Тезис о непознаваемости движущих сил эволюции несовместим с марксистским философским материализмом, который доказывает, по словам товарища Сталина, «что мир и его закономерности вполне познаваемы, что наши знания о законах природы, проверенные опытом, практикой, являются достоверными знаниями, имеющими значение объективных истин, что нет в мире непознаваемых вещей, а есть только вещи, еще не познанные, которые будут раскрыты и познаны силами науки и практики».

Ошибочным должно быть признано увлечение Дарвина «теорией» Мальтуса и попытка использовать ее для объяснения эволюционного процесса. Уже в свое время Ф. Энгельс отметил, что вымирание несовершенных форм фактически происходит без всякого мальтузианства.

По существу говоря, данные Дарвина опровергали «теорию» Мальтуса; Маркс писал: «В произведении Дарвина, например, в обсуждении причин вымирания видов, заключается и детальное - не говоря об его основном принципе - естественно-историческое опровержение мальтусовской теории».

Ревизуя тезис Дарвина о роли перенаселения в процессе естественного отбора, по существу противоречащий эволюционной теории, Лысенко пришел к отрицанию этого тезиса. Перенаселенности в природе, как правило, не было и быть не может. «Поэтому под дарвиновским естественным отбором я понимаю совокупно действующие факторы - изменчивость, наследственность и выживаемость…

Следует, наконец, отметить, что в теории Дарвина недостаточно разработана проблема вида.

Энгельс, оценивая значение понятия вида, писал: «Но без понятия вида вся наука превращалась в ничто. Все ее отрасли нуждались в понятии вида в качестве основы: чем были бы без понятия вида анатомия человека и сравнительная анатомия, эмбриология, зоология, палеонтология, ботаника и т. д.?».

Коренной недостаток дарвиновской концепции развития был отмечен товарищем Сталиным, который писал, что «дарвинизм отвергает не только катаклизмы Кювье, но также и диалектически понятое развитие, включающее революцию, тогда как с точки зрения диалектического метода эволюция и революция, количественное и качественное изменения,- это две необходимые формы одного и того же движения».

Мичуринская биология, разработанная на основах диалектического материализма, отвергает представление о плоской эволюции, протекающей без скачкообразных изменений. Подчеркивая это положение, Лысенко указывает, что виды не абстракция, а реально существующие узлы (звенья) в общебиологической цепи.

Таким образом, понятие о виде имеет двоякое содержание. С одной стороны, оно обозначает качественную определенность и относительную устойчивость вида, с другой - возможность скачкообразного его превращения в результате накопления постепенных изменений.

Отмеченные нами моменты красочно вскрыты в одной из работ Лысенко; он пишет: «Но эволюционная теория Дарвина исходит из признания только количественных изменений, только увеличения или уменьшения и упускает из виду обязательность и закономерность превращений, переходов из одного качественного состояния в другое. А между тем без превращения одного качественного состояния органических форм в другое их качественное состояние нет и развития, нет и превращения одних видов в другие, а есть только увеличение или уменьшение количества, есть только то, что обычно называется ростом.

Именно по этой причине теория дарвинизма, утвердившая в биологической науке понятие развития только понятие плоской эволюции могла лишь объяснить развитее органического мира. Но это объяснение не могло стать действенной теорией, теоретической основой для практического преобразования, для изменения органической природы».

«Старая биологическая наука, исходя из теории плоского эволюционизма, из признания только постепенных количественных превращений одних органических форм в другие, одних состояний в другие состояния, не могла согласовать свои теоретические установки с реальным и закономерным существованием видов в природе. Поэтому даже талантливые, передовые, прогрессивные ученые со своей теорией постепенного перехода, врастания одного вида в другой, новый, вынуждены были, признавая виды реальностью на практике, в теории считать их только условностью, только служебным понятием систематики.

Пытаясь выйти из этого противоречия, не сходя с позиций плоского эволюционизма, Дарвин в своей теории эволюции видообразования прибегнул к реакционному мальтусовскому лжеучению о внутривидовой перенаселенности и якобы вытекающей отсюда внутривидовой конкуренции, как движущей силы эволюции».

Микробиологи к настоящему времени располагают огромным материалом, подтверждающим правильность учения Мичурина-Лысенко. Останавливаясь в настоящей работе лишь на температурной адаптации микроорганизмов, мы можем показать много примеров, говорящих об изменении свойств микроскопических существ под влиянием среды. Так, в недавно вышедшей (1947) нашей монографии «Эколого-географическая изменчивость почвенных бактерий», в которой обобщены работы за 1925-1945 гг., было показано, что климат способствует образованию у бактерий температурных рас. Аналогичный факт в отношении простейших почвы установила Смарагдова (1941).

Температурная адаптация микроорганизмов, в частности образование термофильных форм микробов, дает много ценного для изучения изменений наследственных свойств организмов под влиянием средах. Этот материал тем более важен, что многие микроорганизмы, как, например, преобладающая часть бактерий, лишены структурно оформленного ядра, другие же им обладают. Тем не менее, как это видно из излагаемого ниже материала, устойчивость наследственных свойств и их изменение не зависят от высоты организации того или иного микроба.

Мы уже отмечали, что в лабораторной обстановке, хотя и с известными усилиями, все же удается изменить положение кардинальных температурных точек у микроорганизмов. Очевидно, аналогичное явление должно происходить и в природе, где влияние окружающей среды ведет к появлению соответствующей приспособительной изменчивости у микроорганизмов.

Исходя из изложенного, можно утверждать, что возникновение теплолюбивых форм микробов проходит не в результате беспричинных «мутаций», а при воздействии соответствующих условий внешней среды. Однако типичные мезофильные микроорганизмы не могут сразу превратиться в термофилов.

Из опытов по приспособлению мезофилов к термофилии следует упомянуть работу Даллинжера (Dallinger, 1887). Этому исследователю удалось, постепенно повышая температуру культивирования Flagellata, поднять за семь лет положение максимальной точки их развития с 23 до 70°.

Работами Даллинжера весьма заинтересовался Ч. Дарвин. В своем письме Даллинжеру он писал: «Я не знал, что Вы занимаетесь изменением низших организмов под влиянием изменения жизненных условий и я не сомневаюсь в том, что Ваши результаты будут чрезвычайно интересны и ценны. Упоминаемый Вами факт, что они живут при различных температурах, но могут постепенно приучиться к значительно более высоким, весьма замечателен. Он объясняет существование водорослей в горячих источниках».

Работу по приучению бактерий к повышенным температурам проводил Дьедонне, экспериментировавший с сибиреязвенной бациллой Bad. fluorescens и Bad. prodigiosum. Дьедонне постепенно повышал температуру, при которой выращивались бактерии, и прослеживал их развитие. Этому исследователю после ряда перевивок удалось повысить положение максимальной температурной точки у бактерий на 4-5°.

Аналогичным путем Циклинская (1898) получила расу Bac. subtilis с температурным максимумом на 8° более высоким, чем у исходной культуры.

Гэж и Стогтон вывели более терморезистентную расу - Bact. coli, а Магун то же удалось сделать для Bac. mycoides.

Крон (Krohn, 1923) показал, что Bac. thermophilus Negre, имевший оптимум 50°, за два года культивирования при повышенной температуре повысил эту точку до 62.5°.

Работы, весьма близкие по характеру к только что отмеченным, провели с бактериями и с грибами Ружичка, Пфейффер, Тиль и др.

В опытах большинства исследователей приспособление микробов к повышенным температурам происходило весьма медленно, Нередко при попытках выделения культур, переносящих относительно высокую температуру, получались нежизнеспособные формы, погибавшие при нескольких пересевах. Подобное явление наблюдалось, например, в опытах Янке, который пытался получить термофильную расу Bac. mesentericus.

Постепенное повышение температуры иногда оказывается мало эффективным при выведении теплоустойчивых форм микробов. Так, Касман и Реттгер (Casman a. Rettger, 1933) с помощью этого метода в течение года не могли достигнуть существенных результатов при получении термоустойчивых рас смолоносных бактерий. Поэтому некоторые исследователи рекомендовали использовать сильные воздействия для того, чтобы вызвать в культуре появление большого числа клеток, переносящих повышенную температуру. Данный прием, как не влияющий направленно на свойства живых существ, конечно, не мог дать ощутимых результатов. В частности, им пользовались Буркей и Ругоза (Burkey a. Rugosa, 1940). При этом обычно подвергали культуру опытного микроба резким температурным колебаниям, воздействию солей и т. д.

Резко расходится с другими исследователями мнение Клюйвера и Баарса, допускающих, что многие термофилы являются мутантами, легко возникающими в питательных лабораторных средах. Эта точка зрения выработалась у отмеченных микробиологов на основании изучения Vibrio thermodesulfuricans, происходящего, по-видимому, от Vibrio desulfuricans. Как уже указывалось, мнение Клюйвера и Баарса не может считаться обоснованным.

В последнее время весьма обстоятельные исследования по приспособлению мезофильных микроорганизмов (бактерий и дрожжей) к повышенным температурам были проведены Имшенецким и Логиновой (1944-1948). В своих работах экспериментаторы пытались выявить условия, приводящие к более быстрому получению желательных форм микробов. Данные сведения чрезвычайно интересны, так как в практике нередко бывают нужны микроорганизмы с повышенными температурами развития. Подобные формы обычно выискивались микробиологами в природе, но не всегда с успехом. Поэтому целесообразно ставить на повестку дня вопрос об искусственном выведении микробных культур с заранее заданными свойствами, т. е. о создании до сих пор практически отсутствующего направления работ в микробиологии.

По представлениям, развиваемым Имшенецким, под влиянием супрооптимальных температур в культуре возникают клетки, способные лучше развиваться при повышенной температуре. Если свойства новых клеток созвучны внешней обстановке, то они оказываются более жизнеспособными, чем исходные культуры.

Таким образом, создаваемая среда способствует определенному направлению процесса изменчивости. Мезофильные микроорганизмы при соответствующих условиях могут быть превращены в термофилов. Следует подчеркнуть, однако, еще раз, что этот процесс проходит с известным трудом, и оптимальные условия для его ускорения пока не выяснены. Тем не менее отмеченные факты позволяют допустить наличие филогенетической связи между термофильными и мезофильными микробами. Поскольку определенная пластичность присуща всем микробам, то нам становится понятным наличие большого разнообразия физиологических групп у термофильных бактерий.

Весьма примечателен тот факт, что реверсия термофильных и термотолерантных форм микробов в мезофильные проходит с не меньшим трудом. Это было отмечено исследованиями Дьедонне (1895) и Голиковой (1926), работавшими с бактериями, Жильбером (Gilbert, 1904), имевшим дело с термотолерантной плесенью, и Ноаком (Noak, 1912), экспериментировавшим с термофильным актиномицетом.

Тем не менее длительное выращивание микробов при пониженной температуре снижает их максимальную температуру и терморезистентность (Lowenstein, 1903; Мишустина, 1949, и др.).

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

ПРИКЛАДНАЯ БИОХИМИЯ И МИКРОБИОЛОГИЯ, 2004, том 40, № 4, с. 387-397

УДК: 576.8.098/577.1

ВНЕКЛЕТОЧНЫЕ ФАКТОРЫ АДАПТАЦИИ БАКТЕРИЙ К НЕБЛАГОПРИЯТНЫМ УСЛОВИЯМ СРЕДЫ

© 2004 г. Ю. А. Николаев

Институт микробиологии РАН, 117811, Москва, e-mail: [email protected] Поступила в редакцию 17.11.2003 г.

Рассмотрены сведения о внеклеточных соединениях бактерий, участвующих в их адаптации к неблагоприятным условиям среды: высоким и низким температурам, рост-ингибирующим и бактерицидным концентрациям токсичных веществ (окислители, фенолы, тяжелые металлы), антибиотиков, неблагоприятным значениям рН и солености. Идентифицированные соединения по химической природе относятся к разным типам, они представлены белками, углеводородами, органическими кислотами, нуклеотидами, аминокислотами, липопептидами, летучими соединениями. Большая часть таких соединений в настоящее время не идентифицирована, а свойства их изучены при использовании биотестов. Предлагается рассматривать внеклеточные факторы адаптации (ВФА), как новую группу биологически активных веществ. По механизму действия внеклеточные факторы адаптации можно разделить на несколько групп; протекторы (стабилизаторы); вещества сигнальной природы, являющиеся индукторами защитных механизмов клетки; регуляторы - не индукторы, (например, регуляторы адгезии); "противоядия" и нейтрализующего действия. Основными направлениями изучения ВФА являются поиск новых соединений (на основе биотестов), их идентификация и исследование механизмов действия. Внеклеточные факторы адаптации могут найти широкое практическое применение в биотехнологии, медицине, сельском хозяйстве и охране окружающей среды.

Адаптация бактерий к неблагоприятным условиям среды является традиционным и хорошо изученным разделом биохимии и микробиологии. Под адаптацией (лат. айаргагю - приспособление) понимают сумму физиологических, биохимических, морфологических и поведенческих реакций организма, направленных на изменение скорости роста, метаболизма, жизнеспособности (выживаемости) и генетически присущих организму. Адаптация направлена на выживание конкретной популяции и всего вида в целом. В учебниках по микробиологии, биохимии и теоретической биологии адаптация к неблагоприятным условиям среды рассматривается в разделах "фенотипичес-кая и генетическая адаптации" и "регуляция активности ферментов и их синтеза". Конкретные примеры адаптации многообразны и описаны в ряде обзоров и монографий, в основном с позиций биохимии и генетического контроля развития адаптивного ответа .

Кратко остановимся на терминологии, т.к. даже среди специалистов, работающих в этой области, отсутствует единство в употреблении конкретных терминов. В англоязычной литературе обычно говорят об адаптации как о развитии устойчивости к стрессам или шокам (кислотному, температурному, солевому и др.), понимая под стрессом давление, напряжение, нажим, другими словами - существенное изменение какого-то фактора - температуры, давления и т.п. "Шок"

означает удар, потрясение, толчок, т.е. резкое воздействие на организм, кратковременное по сравнению с длиной клеточного цикла и скоростью обычных адаптивных реакций, и значительное по интенсивности воздействия фактора.

В отечественной биологии существует иная терминология. Согласно Большому толковому словарю русского языка "стресс - это состояние напряжения организма, защитная реакция, вызванная действием неблагоприятного фактора". Такое понимание согласуется с определением основоположника стрессологии Г. Селье, который трактовал стресс как неспецифический ответ организма на предъявленное ему требование . В таком же значении стресс рассматривается в ряде обзоров . Шок - это "реакция организма на сильное внешнее воздействие (а также его состояние после такого воздействия), характеризующаяся резким нарушением регуляции жизненных процессов" . Таким образом, и стресс и шок - это состояние организма, характерная адаптивная реакция на воздействия, различающиеся дозой, интенсивностью и временем.

Правомочно коснуться вопроса о том, насколько состояние стресса является естественным, распространенным или анормальным. В таком случае следует обозначить, что принимается за норму. Постоянное изменение, развитие - неотъемлемые свойства биологических систем .

Изменения носят как векторный, однонаправленный характер, так и циклический. Соответственно, в развитии любой живой системы должны чередоваться фазы быстрого, оптимального развития и фазы подавленного, неоптимального. Исходя из этого, подавленные, лимитированные состояния следует считать естественным и даже неотъемлемым свойством жизни . В таком случае, если принять за "норму" размножение микроорганизмов, увеличение их численности в фазе роста микробной культуры, то состояние клеток в лаг-фазе рассматривается как "стресс новой среды", требующий адаптивных приспособительных реакций. С другой стороны, истощение источников питания или критическое повышение плотности клеток в развивающейся культуре обусловливают "стресс голода", а стационарные клетки демонстрируют физиологическое приспособление культуры к неоптимальным для роста условиям. Такое рассмотрение стресса как нормального и даже способствующего развитию состояния культуры (организма) обусловлено и сочетается с циклическим характером того конкретного физического мира, в котором существуют земные организмы, где циклически изменяются температура, освещенность, влажность, давление, концентрации органических и неорганических соединений, напряженность физических полей, действие биотических факторов.

Принимая во внимание цикличность изменений окружающих условий, следует выделять в них: а) изменения, новые для конкретного этапа развития, но повторяющиеся в цикле развития и входящие в зону толерантности данного вида; б) выходящие за пределы такой зоны толерантности воздействия, неблагоприятные для роста и развития организма, часто биоцидные. Тогда, под адаптацией к каким-либо условиям будем понимать совокупность специфических морфологических, биохимических, физиологических и поведенческих реакций организма, развивающихся в ответ на данные условия и способствующих продолжению функционирования организма или направленные на повышение жизнеспособности (снижение смертности) в экстремальных условиях. В последнем случае речь идет не о продолжении метаболизма (микробной культуры) в конкретных неблагоприятных условиях (адаптации организма), а о сохранении популяции для следующего жизненного цикла в отдаленном будущем, при гибели части популяции (как правило, большей) и временной остановке в функционировании переживающих клеток.

В контексте обсуждаемой проблемы кратко остановимся на признаках стресса у микроорганизмов. При его констатации обязательно сравнение показателей состояния организма, которые наблюдаются в обычном, принимаемом за оптимальное (гомеостаз), и в стрессовом состоя-

нии. Значительное нарушение любого измеряемого показателя гомеостаза является показателем и признаком стресса. У микроорганизмов к показателям угнетенного, стрессового состояния относят: выход белка во внеклеточное пространство , потерю низкомолекулярных соединений клеткой вследствие повышения проницаемости цитоплазматической мембраны, повреждение рибосом, нуклеиновых кислот, уменьшение скорости потребления кислорода, снижение активности ферментов , накопление активных форм кислорода и продуктов перекисного окисления липидов , потерю частью клеток популяции способности образовывать колонии при росте на плотных питательных минимальных средах (т.е. снижение концентрации ко-лониеобразующих единиц, КОЕ) , замедление роста , торможение жизненной активности , агрегацию и адгезию. Обязательным признаком стрессового состояния является его обратимость, возможность возврата к нормальному функционированию при соответствующих изменениях среды.

Среди перечисленных признаков наиболее характерные и чаще всего используемые на практике два - снижение скорости роста и жизнеспособности клеток. Они представляются наиболее прямыми и адекватными показателями состояния стресса. Скорость роста - это интегральный показатель состояния микроорганизмов. Для клеток, растущих с определенной, максимальной для данных условий скоростью (ц.макс), ее снижение до какой-то более низкой величины цмин будет свидетельствовать о стрессовом состоянии микробов. Однако впоследствии рост с этой новой низкой скоростью может стать нормой в новых условиях. Дальнейшее ухудшение условий может привести к снижению ц до 0 или даже к гибели клеток. Начало гибели клеток свидетельствует об исчерпании адаптивных ресурсов отдельных клеток. Однако для популяции уменьшение количества клеток - процесс обратимый и гибель определенного количества отдельных клеток -вполне нормальное явление при том, что другая часть клеток сохраняет жизнеспособность, переходя в покоящееся состояние. Таким образом, снижение скорости роста и концентрации жизнеспособных клеток являются признаками стресса, но первый более характеризует состояние клеток, а второй - популяции. Большинство работ, посвященных адаптации бактерий к неблагоприятным воздействиям, оперирует именно этими двумя показателями.

Обзор ограничен, в основном, адаптацией активно растущих культур к неблагоприятным физико-химическим условиям среды, направленной как на поддержание активного состояния клеток, когда стратегия роста сохраняется, так и на сохранение популяции при смене стратегии роста

стратегией переживания. Адаптации микробных культур к таким условиям, как истощение питательных веществ, новые благоприятные условия, смена источников питания, часто сопряженным с онтогенезом культур (т.е. образованием и прорастанием покоящихся форм) не будут рассмотрены.

В настоящее время достаточно хорошо исследованы механизмы адаптации бактерий к высокой и низкой температурам, высоким концентрациям активных форм кислорода, солей, неионных веществ, высокой радиации, гидростатическому давлению , исчерпанию источников углерода, энергии и других ресурсов . Основное внимание уделяется внутриклеточным из

ОЛЕСКИН А.В. - 2009 г.

  • РЕГУЛЯЦИЯ ТИПА QUORUM SENSING У БАКТЕРИЙ СЕМЕЙСТВА ENTEROBACTERIACEAE

    ЗАЙЦЕВА Ю.В., ПОПОВА А.А., ХМЕЛЬ И.А. - 2014 г.

  • auto-shell.ru - Автомобильный портал - AutoShell